
Global
edition

For these Global editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. this Global edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the north american version.

this is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. if you
purchased this book within the United States
or Canada, you should be aware that it has
been imported without the approval of the
Publisher or author.

Pearson Global Edition

System
Architecture

Global
edition

Strategy and Product Development
for Complex Systems

Edward Crawley Bruce Cameron Daniel Selva
Foreword by Norman R. Augustine

G
lo

ba
l

ed
it

io
n

System
 A

rchitecture
S

trategy and Product D
evelopm

ent for C
om

plex System
s

C
raw

ley
C

am
eron

Selva

Crawley_fullcover.indd 1 11/7/15 6:31 PM

SyStem Architecture
Strategy and Product Development

for Complex Systems

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Edward Crawley Bruce Cameron Daniel Selva

Global Edition

Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Holly Stark
Senior Acquisitions Editor, Global Editions: Priyanka Ahuja
Field Marketing Manager: Demetrius Hall
Senior Product Marketing Manager: Bram van Kempen
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Global HE Director of Vendor Sourcing and Procurement: Diane Hynes
Director of Operations: Nick Sklitsis
Operations Specialist: Maura Zaldivar-Garcia
Senior Manufacturing Controller, Global Editions: Trudy Kimber
Cover Designer: Lumina Datamatics
Production Project Manager: Rose Kernan
Project Editor, Global Editions: K.K. Neelakantan
Program Manager: Erin Ault
Manager, Rights and Permissions: Rachel Youdelman
Media Production Manager, Global Editions: Vikram Kumar
Associate Project Manager, Rights and Permissions: Timothy Nicholls
Full-Service Project Management: George Jacob, Integra
Cover Image: © Boskalis

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Edward Crawley, Bruce Cameron, and Daniel Selva to be identified as the authors of this work have been
asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled System Architecture: Strategy and Product Development
for Complex Systems, 1st edition, ISBN 978-0-13-397534-5, by Edward Crawley, Bruce Cameron, and Daniel Selva
published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks
imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-11084-8
ISBN 13: 978-1-292-11084-4

Typeset in 10/12, Times LT Sts by Integra
Printed in Slovakia by Neografia

 CoNTeNTS 3

Foreword 7

Preface 9

Acknowledgments 11

About the Authors 12

Part 1 System thinking 15

 chapter 1 introduction to System Architecture 16
Architecture of complex Systems 16
the Advantages of Good Architecture 16
Learning Objectives 19
Organization of the text 20
References 21

 chapter 2 System thinking 22
2.1 introduction 22
2.2 Systems and emergence 22
2.3 task 1: identify the System, its Form, and its Function 27
2.4 task 2: identify entities of a System, their Form, and their Function 31
2.5 task 3: identify the relationships among the entities 40
2.6 task 4: emergence 42
2.7 Summary 47
References 48

 chapter 3 thinking about complex Systems 49
3.1 introduction 49
3.2 complexity in Systems 49
3.3 Decomposition of Systems 53
3.4 Special Logical relationships 57
3.5 reasoning through complex Systems 58
3.6 Architecture representation tools: SysmL and OPm 59
3.7 Summary 62
References 64

Part 2 analysis of System architecture 65

 chapter 4 Form 67
4.1 introduction 67
4.2 Form in Architecture 67
4.3 Analysis of Form in Architecture 72
4.4 Analysis of Formal relationships in Architecture 77
4.5 Formal context 89
4.6 Form in Software Systems 91

Contents

4 CoNTeNTS

4.7 Summary 96
References 96

 chapter 5 Function 97
5.1 introduction 97
5.2 Function in Architecture 97
5.3 Analysis of external Function and Value 103
5.4 Analysis of internal Function 108
5.5 Analysis of Functional interactions and Functional Architecture 112
5.6 Secondary Value-related external and internal

Functions 122
5.7 Summary 123
References 123

 chapter 6 System Architecture 124
6.1 introduction 124
6.2 System Architecture: Form and Function 125
6.3 Non-idealities, Supporting Layers, and interfaces in System Architecture 135
6.4 Operational Behavior 139
6.5 reasoning about Architecture using representations 143
6.6 Summary 150
References 150

 chapter 7 Solution-Neutral Function and concepts 151
7.1 introduction 151
7.2 identifying the Solution-Neutral Function 154
7.3 concept 156
7.4 integrated concepts 166
7.5 concepts of Operations and Services 171
7.6 Summary 172
References 173

 chapter 8 From concept to Architecture 174
8.1 introduction 174
8.2 Developing the Level 1 Architecture 176
8.3 Developing the Level 2 Architecture 180
8.4 home Data Network Architecture at Level 2 184
8.5 modularizing the System at Level 1 187
8.6 Summary 189
References 190

Part 3 Creating System architecture 191

 chapter 9 the role of the Architect 192
9.1 introduction 192

 CoNTeNTS 5

9.2 Ambiguity and the role of the Architect 192
9.3 the Product Development Process 198
9.4 Summary 206
References 210

 chapter 10 upstream and Downstream influences on System
Architecture 211
10.1 introduction 211
10.2 upstream influence: corporate Strategy 212
10.3 upstream influence: marketing 215
10.4 upstream influence: regulation

and Pseudo-regulatory influences 218
10.5 upstream influence: technology infusion 220
10.6 Downstream influence: implementation—coding, manufacturing,

and Supply chain management 221
10.7 Downstream influence: Operations 224
10.8 Downstream influence: Design for X 226
10.9 Downstream influence: Product and System

evolution, and Product Families 228
10.10 the Product case: Architecture Business case Decision (ABcD) 231
10.11 Summary 235
References 238

 chapter 11 translating Needs into Goals 240
11.1 introduction 240
11.2 identifying Beneficiaries and Stakeholders 241
11.3 characterizing Needs 250
11.4 interpreting Needs as Goals 258
11.5 Prioritizing Goals 264
11.6 Summary 267
References 273

 chapter 12 Applying creativity to Generating a concept 276
12.1 introduction 276
12.2 Applying creativity to concept 277
12.3 Develop the concepts 282
12.4 expand the concepts and Develop

the concept Fragments 283
12.5 evolve and refine the integrated concepts 288
12.6 Select a Few integrated concepts for Further Development 291
12.7 Summary 293
References 298

 chapter 13 Decomposition as a tool for managing complexity 300
13.1 introduction 300

6 CoNTeNTS

13.2 understanding complexity 300
13.3 managing complexity 309
13.4 Summary 317
References 322

Part 4 architecture as Decisions 323

 chapter 14 System Architecture as a Decision-making
Process 325
14.1 introduction 325
14.2 Formulating the Apollo Architecture Decision

Problem 326
14.3 Decisions and Decision Support 331
14.4 Four main tasks of Decision Support Systems 333
14.5 Basic Decision Support tools 334
14.6 Decision Support for System Architecture 340
14.7 Summary 342
References 342

 chapter 15 reasoning about Architectural tradespaces 345
15.1 introduction 345
15.2 tradespace Basics 346
15.3 the Pareto Frontier 348
15.4 Structure of the tradespace 355
15.5 Sensitivity Analysis 359
15.6 Organizing Architectural Decisions 364
15.7 Summary 370
References 371

 chapter 16 Formulating and Solving System Architecture Optimization
Problems 373
16.1 introduction 373
16.2 Formulating a System Architecture Optimization

Problem 375
16.3 NeOSS example: An earth Observing Satellite

System for NASA 377
16.4 Patterns in System Architecting Decisions 379
16.5 Formulating a Large-scale System Architecture

Problem 403
16.6 Solving System Architecture Optimization Problems 408
16.7 Summary 416
References 416

Appendices 420

Chapter Problems 435

Index 462

 CoNTeNTS 7

Norman R. Augustine

A particularly promising trend that has been taking place in healthcare is the marriage of biomed-
ical research with engineering practices. A friend of mine, an engineer, recently described to me
a meeting that took place at one of America’s most prestigious universities between the faculties
of the engineering department and the cardiology department exploring just such opportunities.
Having decided to focus on constructing a practicable mechanical human heart, the head of car-
diology began his presentation with a description of the properties of the human heart. Almost
immediately an engineer interrupted, asking “Does it have to be in your chest? Could it be, say, in
your thigh where it would be easier to reach?” No one in the room had ever considered that pos-
sibility. Nonetheless, the presentation continued. Soon another interruption occurred; this time it
was another engineer asking, “Instead of just one heart could you have three or four small hearts
integrated in a distributed system?” No one had thought of that either.

System Architecture, so insightfully presented in this book by three of the field’s most highly
regarded leaders, is about asking—and—answering just such questions. In my own career I have
encountered system architecture questions in fields ranging from engineering to business to gov-
ernment. When established practices of the field of system architecture are applied, far superior
outcomes seem to result.

Applying such practices has not always been the case. Early in my career I recall asking
various of my colleagues who were working “together” on a guided missile program why they
had chosen a particular design approach for their specific element of the product. One replied,
“Because it is the lowest weight.” Another assured me that his part would have the lowest radar
cross-section. Still another answered because her component would be less costly. And yet
another had focused on minimizing volume. And so it went.

What was missing? The answer is a system architect.

This shortcoming is too often encountered, usually in more subtle ways. Consider the case of
the Near-Sonic Transport aircraft that was in the early stages of development a few years ago. A
marketing survey had indicated that airline passengers want to get to their destinations faster. To
an aerodynamicist (my own early field), if one wishes to avoid the penalties of supersonic flight,
that translates into more closely approaching Mach One, creeping up on the drag curve into a
regime wherein fuel consumption abruptly increases. This was, in fact, the underlying concept
of the Near-Sonic Transport.

But when viewed from a system architecture perspective, the appropriate question is not how
to fly faster; rather, it is how to minimize the time to get from one’s home, to the airport, check-in,
pass through security, board the aircraft, fly, collect baggage and travel to one’s final destination.
Placed in this context, an even more fundamental question arises: “How much will a passenger
pay to save five or ten minutes of flying time?” The answer turns out to be, “not much”—and the
Near-Sonic Transport aircraft thus met its early, and deserved, demise. There are clearly better

Foreword

Norman R. Augustine has served in industry as chairman and CEO of Lockheed Martin Corporation, in government as
Under Secretary of the Army, in academia as a member of the engineering faculty of Princeton University and as a trustee
of MIT, Princeton, and Johns Hopkins and as a regent of the University System of Maryland’s 12 institutions.

8 ForeworD

opportunities in which to invest if one’s objective is to help passengers reach their destinations
more rapidly. The failing in this case was to not recognize that one was dealing with a problem of
system architecture . . . not simply a problem of aerodynamics and aircraft design.

My own definition of a “system” evolved over years of experience. It is “two or more ele-
ments that interact with one another.” The authors of this book wisely add that the resultant
functionality must exceed the sum of functionalities of the individual elements. Thus simple in
concept, the complexity of most real-world systems is enormous. In fact, the equation describ-
ing the number of possible states a system of several elements (that interact in the simplest of all
manners) has been aptly named, “The Monster!” And when a system includes humans, as many
systems do, the challenge of system architecting becomes all the more immense due to the pres-
ence of unpredictability. But these are the kind of systems that one encounters, and are the kind
of systems that the authors show how to deconstruct and address.

One such system that I had the occasion to analyze concerned provisioning the (human
occupied) U.S. station at the Earth’s South Pole. Setting the specific objective of the evaluation
in itself required care . . . as is often the case. Was it to minimize expected cost? Or to minimize
worst-case cost in the face of uncertainty, say, due to weather? Or perhaps to minimize “regret”—
that is, when supplies are not delivered at all? Or . . .?

In the case of this particular system there are a number of elements that must interface
with one-another: cargo ships, ice breakers, aircraft of various types, ice piers for off-loading,
 storage facilities, traverse vehicles, communications . . . and, underlying all decisions, was the
ever- present danger of single-point failure modes creeping into the architecture.

In the business world one of the more complex problems faced in my career was whether—
and how—all or major parts of seventeen different companies could be combined to create the
Lockheed Martin Corporation. Each of the “elements” had its strengths and its weaknesses; each
involved large numbers of humans, each with their own goals, capabilities, and limitations; and
critical to the decision, the whole had to have significantly greater functionality than the sum of
the parts. If the latter were not the case, there would be no reason to pay the financial premium
that is implicit in most mergers and acquisitions.

Sadly, in engaging complex questions of this type there is no simple mathematical formula
that will reveal the “right” answer. However, the discipline of systems thinking proves to be an
invaluable tool in assessing exposure, opportunities, parametric sensitivities, and more. In the
above case, most people judge that the answer came out “right”—which, incidentally, contrasts
with nearly 80 percent of similar undertakings.

One of the authors of this book and I, along with a group of colleagues, had the occasion to
propose to the President of the United States a human spaceflight plan for America for the next
few decades. In this instance perhaps the most difficult challenge was to define a useful mission,
as opposed to the (non-trivial) task of defining an appropriate hardware configuration. Fortunately,
such issues are amenable to solution through system thinking.

As the authors point out in the material that follows, the process of establishing the archi-
tecture of systems is both a science and an art. But, as is so elegantly portrayed herein, there is
a Darwinian phenomenon wherein systems embodying the mistakes of the past do not survive;
whereas those that embody sound architectures generally do survive—and even prosper.

That, of course, is what architecting complex systems is all about.

 CoNTeNTS 9

We wrote this book to capture a powerful idea. The idea of the “architecture of a system” is
 growing in recognition. It appears in diverse fields including the architecture of a power grid or
the architecture of a mobile payment system. It connotes the DNA of the system, and the basis
for competitive advantage. There are over 100,000 professionals with the title system architect
today, and many more practicing the role of the architect under different titles.

Powerful ideas often have nebulous boundaries. We observed that many of our co-workers,
clients, students had a shared recognition of system architecture issues, but used the term in very
different scopes. The term is often used to differentiate between existing systems, as in “the
architecture of these two mountain bikes is different.”

What exactly constitutes the architecture of a system is often a subject of great debate. In
some fields, the term is used for a singular decision that differentiates two types of systems at
a high level, as in “packet-switched architecture” vs. “circuit-switched architecture.” In other
fields, the term is used to describe a whole implementation, save for some smaller details, as in
“our software as a service architecture.”

Our goal was to capture the power of the idea of architecture, and to sharpen the boundaries.
Much of the power of idea originates with the potential to trade among several architectures
early, to look downstream and identify which constraints and opportunities will be central to
value. It isn’t possible to trade among early ideas if the architecture encompasses all details, nor
is it a meaningful exercise if important drivers of value are missing.

We wrote this book to build on the idea that the architect is a specialist, not a generalist, as
proposed by Eberhardt Rechtin. Our intent is to showcase the analysis and methodologies of sys-
tem architecture, and to develop the ‘science’ of system architecture. This text is less prescriptive
in places than the discipline of product design, as the systems tackled are more complex. Where
the product development community has a stronger focus on design, our focus centers more on
emergence—the magic of functions coming together to produce a coherent whole.

We’ve imbued this book with our past experience. We’ve been fortunate to be involved in the
early development of a number of complex systems in communications, transportation, mobile
advertising, finance, robotics, and medical devices, ranging in complexity from farm equipment
to the International Space Station.

Additionally, we have included case studies from the experience of other system architects,
in disciplines ranging from hybrid cars to commercial aircraft. Our intent was that this book can
only advance system architecture if it works from challenges faced by system architects today.

We wrote this book for two core audiences—professional architects and engineering
 students. System architecture as an idea grew out of practitioners’ wisdom and attempts to codify
the challenges of developing new architecture. One core audience is senior professionals who
are faced with architectural decisions. The field encompasses a variety of professionals in senior
technical and managerial roles in technical industries—software, electronics, industrial goods,
aerospace, automotive, and consumer goods.

This book is also focused on engineering students as a core audience. This text grew out of
the graduate course we have taught at MIT for the past 15 years, where we’ve been fortunate
to educate many leaders in the private sector and government. The lens of architecture helps us
 understand how a system operates today, but moreover, we believe that it is a necessary compe-
tency to learn in the management of technical organizations.

Preface

This page intentionally left blank

 CoNTeNTS 11

We’d like to thank the many people that made this book possible. First and foremost, our thanks
to Bill Simmons, Vic Tang, Steve Imrich, Carlos Gorbea, and Peter Davison who contributed
sections from their expertise, and who all provided comments on early drafts. We’re indebted to
Norm Augustine, who in addition to contributing the foreword, shaped our thinking on the topic.

Our reviewers Chris Magee, Warren Seering, Eun Suk Suh, Carlos Morales, Michael Yukish,
and Ernst Fricke helped us deliver crisp messages and helped identify where we had missed key
ideas. We also received a number of anonymous reviews, whose feedback improved the book.
Dov Dori has been an invaluable partner as the developer of the OPM.

Pat Hale supported the development of the curriculum at MIT, and provided feedback on an
early draft. The 63 students of the MIT System Design and Management Class of 2011 reviewed
each chapter in detail and provided mountains of suggestions. In particular, our thanks to Erik
 Garcia, Marwan Hussein, Allen Donnelly, Greg Wilmer, Matt Strother, David Petrucci, Suzanne
 Livingstone, Michael Livingstone, and Kevin Somerville. Ellen Finnie Duranceau at MIT
 Libraries helped us choose a publisher wisely.

Our graduate students over the years have helped shape the book’s content – much of their
work appears here in one form or another. In addition to those mentioned above, we’d like to
thank Morgan Dwyer, Marc Sanchez, Jonathan Battat, Ben Koo, Andreas Hein, and Ryan Boas.

We would like to thank Eun Suk Suh for his contributions to the Global Edition as well.

The staff at Pearson made our book a reality—Holly Stark, Rose Kernan, Erin Ault, Scott
Disanno, and Bram van Kempen. Thanks for all your hard work.

Finally, to our wives Ana, Tess, and Karen, thanks for your patience as we labored on week-
ends and during vacations, enduring the risk that this project become a “forever book.”

Edward Crawley Bruce Cameron Daniel Selva

Cambridge, MA

acknowledgments

Edward F. Crawley

Edward Crawley is the President of the Skolkovo Institute of Science and Technology (Skoltech)
in Moscow, Russia, and a Professor of Aeronautics and Astronautics and Engineering Systems at
MIT. He received an S.B. and an S.M. in Aeronautics and Astronautics and an Sc.D. in aerospace
structures, all from MIT.

From 1996 to 2003, he was head of the Department of Aeronautics and Astronautics at
MIT. He has served as founding co-director of an international collaboration on the reform of
engineering education and was the lead author of Rethinking Engineering Education: The CDIO
Approach. From 2003 to 2006, he was the Executive Director of the Cambridge-MIT Institute,
a joint venture with Cambridge University funded by the British government and industry; the
Institute’s mission was to understand and generalize how universities can act effectively as
engines of innovation and economic growth.

Dr. Crawley has founded a number of companies. ACX, a product development and manu-
facturing firm; BioScale, a company that develops biomolecular detectors; Dataxu, a company
in Internet advertising placement; and Ekotrope, a company that supplies energy portfolio analy-
sis to businesses. From 2003 to 2012, he served on the Board of Directors of Orbital Sciences
 Corporation (ORB).

Professor Crawley is a Fellow of the AIAA (American Institute of Aeronautics and
 Astronautics) and Royal Aeronautical Society (UK) and a member of the Royal Swedish Acad-
emy of Engineering Science, the Royal Academy of Engineering (UK), the Chinese Academy of
Engineering, and the National Academy of Engineering (US).

Bruce G. Cameron

Bruce Cameron is the founder of Technology Strategy Partners (TSP), a consulting firm, and the
Director of the System Architecture Lab at MIT. Dr. Cameron received his undergraduate degree
from the University of Toronto, and graduate degrees from MIT.

As a Partner at TSP, Dr. Cameron consults on system architecture, product development,
technology strategy, and investment evaluation. He has worked with more than 60 Fortune 500
firms in high tech, aerospace, transportation, and consumer goods, including BP, Dell, Nokia,
Caterpillar, AMGEN, Verizon, and NASA.

Dr. Cameron teaches system architecture and technology strategy at the Sloan School of
Management and in the School of Engineering at MIT. Previously at MIT, Dr. Cameron ran the
MIT Commonality Study, which comprised over 30 firms spanning 8 years.

Previously, Dr. Cameron worked in high tech and banking, where he built advanced ana-
lytics for managing complex development programs. Earlier in his career, he was a system
engineer at MDA Space Systems, and has built hardware currently in orbit. He is a past board
member of the University of Toronto.

about the authors

 ABouT THe AuTHorS 13

Daniel Selva

Daniel Selva is an Assistant Professor in Mechanical and Aerospace Engineering at Cornell. He
has degrees in electrical engineering and aeronautical engineering from Polytechnic University
of Catalonia (UPC), Supaero, and MIT.

Professor Selva’s research focuses on applications of system architecture, knowledge
engineering, and machine learning tools to early design activities. His work has been applied
to the NASA Earth Science Decadal Survey, the Iridium GeoScan Program, and the NASA
Tracking and Data Relay Satellite System (TDRSS), where he developed architectural analysis
in support of system architects and executives. He is the recipient of Best Paper and Hottest
Article awards.

Between 2004 and 2008, he worked for Arianespace in Kourou, French Guiana, as a mem-
ber of the Ariane 5 Launch team, specializing in the On Board Data Handling, and Guidance,
 Navigation and Control. He has previously worked for Cambrian Innovation in the development
of novel bioelectromechanical systems for use on orbit, and at Hewlett Packard on the monitoring
of banking networks. He is a member of the Board of Advisors for NuOrion Partners, a wealth
management firm.

This page intentionally left blank

Part 1: System Thinking focuses on the opportunities presented in system architecture, namely, the
opportunity to articulate the key decisions that define a system and to choose an architecture to
match complex challenges.

Chapter 1: Introduction to System Architecture presents the idea of architecture with exam-
ples, identifies good architecture, and outlines the book. Chapter 2: System Thinking assembles
the ideas necessary for system analysis. Chapter 3: Thinking about Complex Systems identifies the
constituent modes of thinking we will use to analyze system architecture.

System Thinking
Part 1

Architecture of Complex Systems

In June 1962, NASA made the decision to use a dedicated capsule to descend to the surface of the
Moon from lunar orbit, rather than to descend to the surface with the Command/Service Module
used to bring astronauts to lunar orbit. This decision implied that the dedicated capsule, later named
the Lunar Module, would have to rendezvous in lunar orbit with their ride home and support a crew
transfer between vehicles.

This decision was made in the first year of the Apollo program, seven years before the ma-
neuver would be executed in lunar orbit. It was made before the majority of program staff was
hired and before the design contracts were awarded. Yet the decision was formative; it eliminated
many possible designs and gave the design teams a starting point. It guided the work of hundreds
of thousands of engineers and an investment that in 1968 exceeded 4% of federal outlays.

We conceive, design, implement, and operate complex and sometimes unprecedented sys-
tems. The largest container ship today carries 18,000 containers, up from 480 containers in 1950.
[1], [2] Cars built today routinely have 70 processors scattered through the vehicle, connected
by as many as five separate buses running at 1 Mbit/s [3]—a far cry from early electronics buses
used to communicate fuel injection at a mere 160 bit/s. Oil platforms costing $200 to 800 million
[4] are developed and produced almost routinely; 39 were delivered between 2003 and 2009. [5]

These systems are not merely large and complex. They are sometimes configurable for each
customer and are often very costly to deliver. Customers of consumer products expect unprec-
edented levels of customization and configurability. For example, BMW calculated that it offered
1.5 billion potential configurations to its customers in 2004. [6] Some complex systems are very
costly to deliver. Norm Augustine points out that the unit cost of a fighter aircraft rose exponen-
tially from 1910 through 1980, predicting that in 2053 the entire U.S. defense budget would pro-
cure exactly one aircraft. [7] Interestingly, Augustine’s prediction has held up well for 30 years: In
2010 an F-22 raptor cost $160 million, or $350 million if the development costs are included. [8]

The Advantages of Good Architecture

Do these complex systems meet stakeholder needs and deliver value? Do they integrate easily,
evolve flexibly, and operate simply and reliably?

Well architected systems do!

Chapter 1
Introduction to System Architecture

� Chapter�1� •� IntroduCtIon�to�SyStem�arChIteCture� � � � 17

The simplest notion of architecture we will use is that architecture is an abstract descrip-
tion of the entities of a system and the relationship between those entities. In systems built by
humans, this architecture can be represented as a set of decisions.

The premise of this text is that our systems are more likely to be successful if we are careful
about identifying and making the decisions that establish the architecture of a system. This text is
an attempt to encode experience and analysis about early system decisions and to recognize that
these choices share common themes. Over the past 30 years, analysis and computational effort
have opened a broad tradespace of options, and in many areas, that tradespace grew faster than
our ability to understand it. The field of system architecture grew out of practitioners’ attempts
to capture expert wisdom from past designs and to structure a broader understanding of potential
future designs.

The market context in which our products and systems compete does not offer any comfort.
Consider Boeing’s decision to “bet the company” on the development of the 787 aircraft and the
associated composite technology. Boeing is half of a global duopoly for large passenger aircraft,
yet in its core business, rather than spreading risk across many small programs, the firm turns
on a single product’s emergent success or failure. The global market for mobile devices is larger
and more competitive still. Although it can be argued that the product risk is more diversified
(that is, an individual product development investment is a smaller fraction of firm revenues) in
the mobile sector, witness the declines of former giants BlackBerry and Ericsson. To capture
market share, systems must innovate on the product offering, incorporate novel technologies,
and address multiple markets. To compete on tight margins, they must be designed to optimize
manufacturing cost, delivered through multi-tiered supply chains. We will argue that good archi-
tectural decisions made by firms can create competitive advantage in difficult markets, but bad
decisions can hobble large developments from the outset.

Figure 1.1� �Complex�systems:�the�heavy-lift�ship�mV�Blue Marlin transporting

the�36,000�metric�ton�drilling�platform�SSV�Victoria.� (Source: dockwise/rex�
Features/associated�press)

18 part�1� •� SyStem�thInkIng

Every system built by humans has an architecture. Products such as mobile phone software,
cars, and semiconductor capital equipment are defined by a few key decisions that are made
early in each program’s lifecycle. For example, early decisions in automotive development, such
as the mounting of the engine, drive a host of downstream decisions. Choosing to mount an
engine transversely in a car has implications for the modularization of the engine, gearbox, and
drivetrain, as well as for the suspension and the passenger compartment. The architecture of a
system conveys a great deal about how the product is organized.

In the design of complex systems, many of these early architectural decisions are made
without full knowledge of the system’s eventual scope. These early decisions have enormous
impact on the eventual design. They constrain the envelope of performance, they restrict poten-
tial manufacturing sites, they make it possible or impossible for suppliers to capture after-market
revenue share, and so forth. As an example of gathering downstream information for upstream
consumption, the width of John Deere’s crop sprayers is constrained to be less than the column
separation at the manufacturing site. In this case the width constraint is obvious to the develop-
ment team and was not uncertain or hidden, but it is one of the main variables in the productivity
equation for a crop sprayer.

The central assertion of this text is that these early decisions can be analyzed and treated.
Despite uncertainty around scope, even without knowing the detailed design of components, the
architecture of the system merits scrutiny. Architecting a system is a soft process, a composite
of science and art; we harbor no fantasies that this can or should be a linear process that results
in an optimal solution. Rather, we wrote this text to bring together what we’ve learned about the
core ideas and practices that compose system architecture. Our central assertion is that structured
creativity is better than unstructured creativity.

This focus on decisions enables system architects to directly trade the choices for each
 decision, rather than the underlying designs they represent, thus encouraging broader concept
evaluation. At the same time, this decision language enables system architects to order decisions
according to their leverage on the system performance, in recognition that system architectures
are rarely chosen in one fell swoop; rather, they are iteratively defined by a series of choices.

The failed National Polar-Orbiting Environmental Satellite System (NPOESS) is an exemplar
of architectural decisions handicapping a system. NPOESS1 was created in 1994 from the merger
of two existing operational weather satellite programs, one civilian (weather prediction) and one
military (weather and cloud cover imagery). The rationale for the merger was not ill-founded; these
two systems collecting related data presented a $1.3 billion cost consolidation opportunity. [9]
Early in the merged program, a decision was made to include the superset of instruments capability
from both historical programs. For example, the VIIRS (Visible Infrared Image Radiometer Suite)
 instrument was expected to combine the capabilities of three historical instruments.

The assumption underlying the program was that the functional complexity of the merged pro-
gram would scale linearly with the sum of the two historical programs. This might have held, had
the program derived needs and concepts from the heritage instruments. However, a second decision
to list new functions independent of the system concept trapped the architectural performance in an

1 The prevalence of challenges with government programs cited here reflects a bias: We have more information about
government programs than about private programs. Our intent is to learn from the challenges, not to comment on public
vs. private.

� Chapter�1� •� IntroduCtIon�to�SyStem�arChIteCture� � � � 19

unreachable corner of its envelope. For example, the VIIRS instrument was to accomplish the tasks
of three instruments with less mass and volume than a single historical instrument.

A series of early architectural decisions placed NPOESS on a long and troubled devel-
opment path, attempting to create detailed designs that ignored fundamental system tensions.
Further, a failure to appoint a system architect responsible for managing these trades during
the early years of the program foreshadowed challenges to come. The program was canceled in
2010, $8.5 billion over the original $6.5 billion estimate. [10]

This text is not a formula or a manual for product development. Success is not assured.
Experience suggests that getting the architecture wrong will sink the ship but that getting it “right”
merely creates a platform on which the execution of the product can either flourish or flounder.

There are many aspects of this text that are applicable to all systems, whether built by humans,
evolved by society, or naturally evolved. The analysis of architecture can be applied to built or evolved
systems. For example, brain researchers are trying to unfold the architecture of the brain, urban plan-
ners deal with the architecture of cities, and political and other social scientists strive to understand the
architecture of government and society. But we will focus predominantly on built systems.

Learning Objectives

This is a text on how to think, not what to think. Our intent is to help the reader develop a way to
think about and create system architecture, not to provide a set of procedures. Experience suggests
that the best architects have a remarkably common understanding of architecture and its methods,
but the content they work with and the context in which they work vary widely.

This text aims to help system architects to structure and lead the early, conceptual phases of
the system development process, and to support the process throughout its development, deploy-
ment, operation, and evolution.

To these ends, this text provides guidance to help architects:

•	 Use system thinking in a product context and a system context
•	 Analyze and critique the architecture of existing systems
•	 Identify architectural decisions, and differentiate between architectural

and non-architectural decisions
•	 Create the architecture of new or improved systems, and produce the deliverables

of the architect
•	 Place the architecture in the context of value and competitive advantage for the

 product and the firm
•	 Drive the ambiguity from the upstream process by defining the context and

 boundaries of the system, interpreting needs, setting goals, and defining the
 externally delivered functions

•	 Create the concept for the system, consisting of internal function and form, while
thinking holistically and out of the box when necessary

•	 Manage the evolution of system complexity and provide for future uncertainty so that
goals are met and functions are delivered, while the system remains comprehensible
to all during its design, implementation, operation, and evolution

•	 Challenge and critically evaluate current modes of architecting

20 part�1� •� SyStem�thInkIng

•	 Identify the value of architecting, analyze the existing product development process
of a firm, and locate the role of architecting in the product development process

•	 Develop the guiding principles for successful architecting

To accomplish these objectives, we present the principles, methods, and tools of system
architecture. Principles are the underlying and long-enduring fundamentals that are always (or
nearly always) valid. Methods are the ways of organizing approaches and tasks to achieve a con-
crete end; they should be solidly grounded on principles, and they are usually or often applicable.
Tools are the contemporary ways to facilitate process; they are applicable sometimes.

One of our stated goals is for readers to develop their own principles of system architecture
as they progress through the text. The architect should base decisions, methods, and tools on
these principles.

“Principles are general rules and guidelines, intended to be enduring and seldom amended,
that inform and support the way in which an organization sets about fulfilling its mission. In
their turn, principles may be just one element in a structured set of ideas that collectively define
and guide the organization, from values through to actions and results.”

U.S. Air Force in establishing its “Headquarters Air Force
Principles for Information Management,” June 29, 1998

“Principles become modified in practice by facts.”

James Fenimore Cooper,
The American Democrat, 1838, Ch. 29

We have scattered our own principles throughout this text, but we encourage you to develop
your own principles as you reflect on your own experience.

Organization of the Text

This text is organized into four parts.

Part 1: System Thinking (Chapters 1 to 3) introduces the principles of system thinking and
then outlines the tools for managing complexity. These principles and tools are echoed through
the remainder of the text. The notions are expressed in terms of running examples: an amplifier
circuit, the circulatory system, a design team, and the solar system.

Part 2: Analysis of System Architecture (Chapters 4 to 8) is focused on the analysis of
 architecture. We provide an in-depth exploration of form in an effort to separate it from function,
and then we deconstruct function. We introduce the ideas of solution-neutral function and con-
cept, and we analyze the architecture of existing simple systems. Analysis can be applied to any
 system—both to those intentionally built by humans and to those that evolve, such as organiza-
tions, cities, or the brain. In many sections of Part 2, we begin with very simple systems. This is
not intended as an insult to the reader’s intelligence. Rather, we chose for analysis those systems
that can be completely understood in their constituent parts, in order to hone the methods that we
later scale up to complex systems. Working with simple systems eliminates the concern that the

� Chapter�1� •� IntroduCtIon�to�SyStem�arChIteCture� � � � 21

product cannot be treated as a system because it is impossible to comprehend all of its constitu-
ent parts at one time.

Part 3: Creating System Architecture (Chapters 9 to 13) is focused on the creation of archi-
tecture through decision making. It traces the forward process of identifying needs through to
choosing an architecture. Whereas Part 2 works backwards from architecture to solution-neutral
function, Part 3 deals directly with the ambiguity of the upstream process of goal setting, when
no legacy architecture is available. Part 3 is organized around three ideas: reducing ambiguity,
applying creativity, and managing complexity.

Part 4: Architecture as Decisions (Chapters 14 to 16) explores the potential of a variety
of computational methods and tools to help the architect reason through decisions. Parts 1 to 3
are deliberately focused on the architect as a decision maker. We layer analysis and frame-
works on top of the domain expertise of the architect, but the architect performs the integration
among the layers, weighing priorities and determining salience. Part 4 explores the idea of
encoding architectural decisions as parameters in a model that attempts to capture the salient
pieces of many layers or attributes. We will show that there are applications for which the
complexity of the architecting problem may be usefully condensed in a model, but it is impor-
tant to remember that no model can replace the architect—accordingly, we emphasize decision
 support. In our experience, this decision representation serves as a useful mental model for the
tasks of architecting.

 [1] “Economies of Scale Made Steel,” Economist, 2011. http://ww3.economist.com/node/21538156

 [2] http://www.maersk.com/innovation/leadingthroughinnovation/pages/buildingtheworldsbiggestship.aspx

 [3] “Comparison of Event-Triggered and Time-Triggered Concepts with Regard to Distributed Control
Systems,” A. Albert, Robert Bosch GmbH Embedded World, 2004, Nürnberg.

 [4] J.E. Bailey and C.W. Sullivan. 2009–2012, Offshore Drilling Monthly (Houston, TX: Jefferies and
Company).

 [5] “US Gulf Oil Profits Lure $16 Billion More Rigs by 2015,” Bloomberg, 2013. http://www.bloomberg
.com/news/2013-07-16/u-s-gulf-oil-profits-lure-16-billion-more-rigs-by-2015.html)

 [6] E. Fricke and A.P. Schulz, “Design for Changeability (DfC): Principles to Enable Changes in
Systems throughout Their Entire Lifecycle,” Systems Engineering 8, no. 4 (2005).

 [7] Norman R. Augustine, Augustine’s Laws, AIAA, 1997.

[10] D.A. Powner, “Environmental Satellites: Polar-Orbiting Satellite Acquisition Faces Delays;
Decisions Needed on Whether and How to Ensure Climate Data Continuity,” Washington, D.C.:
United States Government Accountability Office, 2008. Report No.: GAO-08-518.

 [9] D.A. Powner, “Polar-Orbiting Environmental Satellites: Agencies Must Act Quickly to Address
Risks That Jeopardize the Continuity of Weather and Climate,” Washington, D.C.: United States
Government Accountability Office, 2010. Report No.: GAO-10-558.

References

 [8] “The Cost of Weapons—Defense Spending in a Time of Austerity,” Economist, 2010. http://www.
economist.com/node/16886851

2.1 Introduction

System thinking is, quite simply, thinking about a question, circumstance, or problem explicitly as a
system—a set of interrelated entities. System thinking is not thinking systematically. The objective
of this chapter is to provide an overview and introduction to systems and system thinking.

System thinking can be used in a number of ways: to understand the behavior or perfor-
mance of an existing system; to imagine what might be if a system were to be changed; to inform
decisions or judgments that are of a system nature; and to support the design and synthesis of a
system, which we call system architecture.

System thinking sits alongside other modes of reasoning, such as critical reasoning (evalu-
ating the validity of claims), analytic reasoning (conducting an analysis from a set of laws or
principles), and creative thinking, among others. Well-prepared thinkers use all of these modes
of thought (cognition) and recognize when they are using each one (meta-cognition).

This chapter begins by defining what a system is and exploring the property of emergence
that gives systems their power (Section 2.2). Subsequently, we examine four tasks that aid us in
system thinking:

1. Identify the system, its form, and its function (Section 2.3)
2. Identify the entities of the system, their form and function, and the system boundary

and context (Section 2.4)
3. Identify the relationships among the entities in the system and at the boundary, as well

as their form and function (Section 2.5)
4. Identify the emergent properties of the system based on the function of the entities, and

their functional interactions (Section 2.6)

These tasks will be explained sequentially, but real reasoning is rarely sequential and more
often iterative. As discussed in Chapter 1, methods are the ways of organizing such tasks to
achieve a concrete end. Methods are usually or often applicable. The principles on which the
methods of system thinking are based are also presented in this chapter.

2.2 Systems and Emergence
Systems

Because system thinking is reasoning about a question, circumstance, or problem explicitly as a
system, our starting point for system thinking should be a discussion of systems. Few words in the

Chapter 2
System Thinking

 Chapter 2  •  SyStem thinking 23

The definition has two important parts:

1. A system is made up of entities that interact or are interrelated.
2. When the entities interact, there appears a function that is greater than, or other than,

the functions of the individual entities.

At the core of all definitions of the word “system” is the first property listed here: the pres-
ence of entities and their relationships. Entities (also called parts, modules, routines, assemblies,
etc.) are simply the chunks that make up the whole. The relationships can exist and be static (as
in a connection) or dynamic and interactive (as in an exchange of goods).

Based on this part of the definition, what does not qualify as a system? If something is
uniform in consistency throughout, it is not a system. For example, a brick (at a macroscopic
level) is not a system, because it does not contain entities. However, a brick wall would qualify
as a system, because it contains entities (many bricks and much mortar) and relationships (load
exchange and geometry). Likewise, if a set of entities have no relationships (say, a person in
Ukraine and a bag of rice in Asia), they do not constitute a system.

Notice how hard one must work to define things that are not systems! Someone might argue
that at the right scale, a brick is a system: It is made of clay, which itself is a mixture of materials,
and the materials have relationships such as sharing load and being in a geometric form (a par-
allelepiped). Likewise, a person in Ukraine could spend a euro to buy Asian rice, linking these
entities into a trading system.

In fact, broadly construed, almost any set of entities can be interpreted as a system, and
this is why the word is so commonly used. A closely related concept is the adjective “complex,”
which (in its original and primary sense) means having many entities and relationships. In some
languages, the noun “complex” is used to mean a system, as it sometimes is in technical English
(as in “Launch Complex 39A” at the Kennedy Space Center).

Two ideas that are often confused are the concepts system and product. A product is some-
thing that is, or has the potential to be, exchanged. Thus some products are not systems (rice)
and some systems are not products (the solar system), but many of the things we build are both
products (exchanged) and systems (many interrelated entities), so the two words have become
mixed in common usage.

Another closely related concept is architecture, the subject of this text. In its simplest form,
architecture can be defined as “an abstract description of the entities of a system and the relation-
ships between those entities.” [1] Clearly, the notion of a system (that exists and functions) and
architecture (the description of the system) are intimately related.

modern English language are as widely applied or defined as the word “system.” The definition that
we use in this text is given in Box 2.1.

A system is a set of entities and their relationships, whose functionality is greater than the
sum of the individual entities.

Box 2.1 Definition: System

24 part 1  •  SyStem thinking

Emergence

System thinking emphasizes the second property listed in the definition of a system: A system is a set
of entities and their relationships, whose functionality is greater than the sum of the individual entities.

This emphasized phrase describes what is called emergence, and it is the power and the
magic of systems. Emergence refers to what appears, materializes, or surfaces when a system
operates. Obtaining the desired emergence is why we build systems. Understanding emergence
is the goal—and the art—of system thinking.

What emerges when a system comes together? Most obviously and crucially, function
emerges. Function is what a system does: its actions, outcomes, or outputs. In a designed system,
we design so that the anticipated desirable primary function emerges (cars transport people).
This primary function is often linked to the benefit produced by the system (we buy cars because
they transport people). Anticipated but undesirable outcomes may also emerge (cars burn hydro-
carbons). Sometimes, as a system comes together, unanticipated function emerges (cars provide
a sense of personal freedom). This is a desirable unanticipated outcome. An undesirable unan-
ticipated function can also emerge (cars can kill people). As suggested by Table 2.1, emergent
function can be anticipated or unanticipated, and it can be desirable or undesirable. It is also clear
that more than the primary desirable function can emerge from a system (cars can also keep us
warm or cool, and cars can entertain people).

The essential aspect of systems is that some new functions emerge. Consider the two ele-
ments shown in Figure 2.1: sand and a funnel-shaped glass tube. Sand is a natural material and
has no anticipated function. A funnel concentrates or channels a flow. However, when they are
put together, a new function emerges: keeping time. How could we have ever expected that
sand + funnel would produce a time-keeping device? And how did two mechanical elements,
sand and shaped glass, produce an informational system that keeps track of the abstraction
called “time”?

In addition to function, performance emerges. Performance is how well a system oper-
ates or executes its function(s). It is an attribute of the function of the system. How quickly
does the car transport people? How accurately does the hourglass keep time? These are
issues of performance. Take as an example the human system shown in Figure 2.2, a soc-
cer (or football) team. The function of all soccer teams is the same: the team members must
work together to score more goals than the opponent. However, some soccer teams have bet-
ter performance than others — they win more games. The team portrayed in Figure 2.2 was
arguably the highest-performing team in the world in 2014 — the German national team that
won the 2014 World Cup.

Table 2.1 | Types of emergent functions

anticipated emergence Unanticipated emergence

Desirable Cars transport people

Cars keep people warm/cool

Cars entertain people

Cars create a sense of personal
freedom in people

Undesirable Cars burn hydrocarbons Cars can kill people

 Chapter 2  •  SyStem thinking 25

The first principle of system architecture deals with emergence (Box 2.2). Principles are
long-enduring truths that are always, or nearly always, applicable. The principles we introduce
will generally begin with quotations illustrating how great systems thinkers have expressed the
principle. These quotations suggest the timelessness and universality of the principle. Each prin-
ciple also includes a descriptive part and a prescriptive part (which guide our actions), as well as
some further discussion.

There are other attributes of operation that emerge from a system, such as reliability, main-
tainability, operability, safety, and robustness. These are often called the “ilities.” In contrast with
functional and performance emergence, which tend to create value immediately, the emergent
value created by these “ilities” tends to emerge over the lifecycle of the system. How safely
does a car transport people? How reliably does the hourglass keep time? How robustly does the
German national soccer team win? How robustly or reliably will the software run? When a car

�

FigUre 2.1 emergent function from sand and a funnel: time keeping. (Source: LOOk Die

Bildagentur der Fotografen gmbh/alamy)

FigUre 2.2 emergent performance: the german soccer team in the

2014 World Cup. (Source: wareham.nl (sport)/alamy)

26 part 1  •  SyStem thinking

breaks down at the side of the road, is it a mechanical “ility” problem or an embedded software
“ility” problem?

The final class of emergence is so important that it merits a separate discussion: severe
unanticipated and undesirable emergence. We usually call this an emergency (from the same
word root as emergence!). Cars can lose traction and spin or roll. A soccer team could develop
conflicts and lose its effectiveness on the day of an important match. Pictured in Figure 2.3 is a

“A system is not the sum of its parts, but the product of the interactions of those parts.”

russell ackoff

“The whole is more than the sum of the parts.”

aristotle, Metaphysics

As the entities of a system are brought together, their interaction will cause function,
behavior, performance, and other intrinsic properties to emerge. Consider and attempt to
predict the anticipated and unanticipated emergent properties of the system.

•	 The interaction of entities leads to emergence. Emergence refers to what appears,
materializes, or surfaces when a system operates. It is this emergence that can give
systems added value.

•	 As a consequence of emergence, change propagates in unpredictable ways.

•	 It is difficult to predict how a change in one entity will influence the emergent
properties.

•	 System success occurs when the anticipated properties emerge. System failure occurs
when the anticipated emergent properties fail to appear or when unanticipated unde-
sirable emergent properties appear.

Box 2.2 Principle of Emergence

FigUre 2.3 emergency as emergence: hurricane

katrina. (Source: image courtesy gOeS project Science Office/naSa)

 Chapter 2  •  SyStem thinking 27

natural example of emergence: Hurricane Katrina as it bore down on New Orleans. The devasta-
tion from this system was enormous.

These emergent properties associated with function, performance, the “ilities,” and the
absence of emergencies are closely related to the value that is created by a system. Value is ben-
efit at cost. We build systems to deliver the benefit (the worth, importance, or utility as judged by
a subjective observer).

In summary:

•	 A system is a set of entities and their relationships, whose functionality is greater
than the sum of the individual entities.

•	 Almost anything can be considered a system, because almost everything contains
 entities and relationships.

•	 Emergence occurs when the functionality of the system is greater than the sum of the
functionalities of the individual entities considered separately.

•	 Understanding emergence is the goal—and the art—of system thinking.
•	 Function, performance, and the “ilities” emerge as systems operate. These are

closely linked to benefit and value, as is the absence of emergencies.

2.3 Task 1: Identify the System, Its Form,
and Its Function

Form and Function

Systems simultaneously have the characteristics of form and function. Form is what the system
is. Function is what the system does. To aid in developing an understanding of form and
 function in systems and system thinking, we will use four running examples: an amplifier, a
design team, the circulatory system, and the solar system. Figures 2.4 through 2.7 show simple
illustrations or schematics of these four systems. Note that the examples are chosen to include
built and evolved systems, as well as informational, organizational, mechanical, and natural
systems.

Each of these systems clearly has a form. Form is what a system is; it is the physical or
informational embodiment that exists or has the potential to exist. Form has shape, configura-
tion, arrangement, or layout. Over some period of time, form is static and perseverant (even

Output
Input

R1

R2

0V

�

�

FigUre 2.4 amplifier circuit as a system. an operational

amplifier and other electronic components that amplify signals.

28

FigUre 2.5 Design team (team X) as a system. three people

whose job it is to come up with a new device design. (Source:
edyta pawlowska/Fotolia)

Jugular Vein Carotid Artery

Capillary Region of the Lung

Pulmonary Artery

Aorta

Left Artrium

Left Ventricle

Right Ventricle

Hepatic Portal Vein

Mesenteric Arteries

Renal Artery

Iliac Artery
Iliac Vein

Renal Vein

Lymphatic Vassels

Hepatic Vein

Lymph Node

Inferior Vena Cava

Right Atrium

Superior Vena Cava

Pulmonary Vein

O2CO2

Capillary Region of the Lower Body
(Trunk and Legs)

Capillary Region of the Upper Body (head and arms)

CO2

CO2

O2

O2
LUNGS

LIVER

DIGESTIVE
TRACT

KIDNEYS

FigUre 2.6 Circulatory system. the heart, lungs, and capillaries that supply

oxygen to tissue and the organs. (Source: Stihii/Shutterstock)

 Chapter 2  •  SyStem thinking 29

though form can be altered, created, or destroyed). Form is the thing that is built; the creator of
the system builds, writes, paints, composes, or manufactures it. Form is not function, but form
is necessary to deliver function.

Function is what a system does; it is the activities, operations, and transformations that
cause, create, or contribute to performance. Function is the action for which a thing exists or is
employed. Function is not form, but function requires an instrument of form. Emergence occurs
in the functional domain. Function, performance, the “ilities,” and emergencies are all issues of
functionality. Function is more abstract than form, and because it is about transitions, it is more
 difficult to diagram than form.

Function consists of a process and an operand. The process is the part of function that
is pure action or transformation, and thus it is the part that changes the state of the operand.
The operand is the thing whose state is changed by that process. Function is inherently tran-
sient; it involves change in the state of the operand (creation, destruction, or alteration of some
aspect of status of the operand). In organizations, function is sometimes referred to as role or
responsibilities.

We are now prepared to state Task 1 of System Thinking (Box 2.3).

FigUre 2.7 Solar system. Our sun, and the planets and

smaller bodies that orbit it. (Source: JaCOpin/BSip/Science Source)

Box 2.3 Methods: Task 1 of System Thinking

Identify the system, its form, and its function.

Now we can apply this first task to our four running examples and identify their form and
 function, as summarized in Table 2.2.

For each of the built systems, there is an instrument of form, a process, and a value-related
operand, whose change in state is the reason for the existence of the system. For the amplifier
circuit, the output signal is the value-related operand. There may be more than one operand of

